Data acquisition developments and collaborations at Daresbury Laboratory

Collaboration

- Collaboration not necessarily easy
- Communication is key
- Best to practise with friends first
- Will describe couple of developments based on collaborations
 - PXGEN++
 - DNA

PX Objectives

- PXGEN out of date and hard to update.
- Robust replacement offering greater functionality.
- Uniform interface across stations, detectors, cameras etc.
- Simple GUIs that make set up and data collection easy.
- Automation wherever possible.
- Link data acquisition and processing.
- Flexibility to cope with future changes.
- Remote monitoring and control.

Daresbury Objectives

- Cross facility group collaboration.
- Possible deployment to DIAMOND.
- Plug and play construction.
- Scripting language to facilitate easy configuration of experiments.
- Distributed solution.

Strategy

- Inter project collaboration.
 - PX, NCD, XRS, XRD, VUV-IR.
- Incremental and iterative development.
- Largely object oriented development. Java, C++ and C.
- Classes to represent real beam line hardware e.g. detectors, cameras, tables, mirrors etc.
- Use interfaces to give plug and play.
- Use CORBA to enable distribution.
- Provide common 'look and feel' where appropriate.
- Configuration of objects via XML files.

Advantages to in-house collaboration

- Shared development effort allows more to be achieved without repetition.
- Other programmers understand the software.
- Wider use leads to greater robustness.
- Get benefits from aspects that may not at first be seen as directly PX aims e.g. scripting, XML configuration.
- Users see common interfaces across beam lines and stations.
- Aids the development of multiple technique stations.

PXGEN++

- •Same GUI for data collection independent of detector in use.
- •Data collection ready, tested with Q4 and MAR image plates (MAR CCD next).
- •Using OEMove for beam line set-up.
- •PXGEN++ and OEMove undergoing final tests.
- •Once fully tested and released on one PX station should be able to deploy on others.
- •Need to integrate in XAFS control, automation, sample changing etc.
- •Standard XAFS GUI and control under development as part of 6.2 project (NCD, XRD and XAFS).

Detectors and Cameras

Abstract Detector provides standard interface e.g.

- •initialise()
- •clear()
- •read().....

Concrete detectors implement these.

Similarly for Camera.

GUI/Experiment only know that they have a Detector and a Camera.

OEMove

- •OEMove provides a standard tool to allow the control and set up of Optical Elements.
- •OEedit allows the configuration of one or more visual representations of OEs.
- •OEMove reads in representations at run time.
- •One tool meets needs of PX and other stations.

Optical Elements

- •OEs obey a standard interface.
- •Each OE has a number of specific DOFs (Degree Of Freedom).
- •Specific DOFs are implemented generally e.g. FrontHoriz and BackHoriz by SingleAxisLinearDOF.
- •DOFs obey a standard interface.

Scripting - JCLAM

- •JCLAM is a scripting language developed on top of JPython. A set of Python scripts basically.
- •Can still use standard Python language.
- •JCLAM run separately and accepts commands via a message handler.
- •Separates control from the GUI.
- •Standard scanning GUI will be set up.
- •Allows easy/rapid alteration of control.
- •Users can be given control of hardware and allowed to alter scans where required e.g. in different projects.
- Examples
 - •pos LeftSlit 2.0 RightSlit 2.0
 - •scan Slit 1 1 5 qcr 1

Absorption Edge Scans

- •Standard absorption edge scan interface.
- Supports multiple modes, Angle,
 KSpace and Fast.
- •GUI completely detached from control.
- •Scans done via JCLAM.

scansie.SCANSIE(['mono',18235.3,-1.8,18054.2,'tm',1000.0])

Automation

- Development of Optical Elements and the use of JCLAM should facilitate beam line automation.
 - Feedback required on beam
 - Objectives include
 - Alignment of camera to beam, standard peak searching and scanning.
 - Slit optimisation.
 - Focussing of mirror/monochromators.
 - Sample changing and alignment.
- Feedback from data processing (DNA).
- Automatic logging of data collection.

DNA - DNA's Not Autostruct

- A collaboration presently involving Cambridge LMB, ESRF and Daresbury.
- Still at a relatively early stage and under active development (unfortunately part time).
- Eventual aim is to completely automate the collection and processing of Protein Crystallography data.
- Initially the project will develop what we are calling an 'expert system' sitting between data collection software at a given x-ray synchrotron and Mosflm.
- Utilising the Mosflm server under development at Cambridge for new Mosflm GUI.
- The project however also aims to allow the use of other data processing software in the long term.
- http://www.dna.ac.uk/

DNA architecture

DNA progress at ESRF

- •ProDC modified to add a button, characterise crystal.
- •Expert system developed to communicate with Mosflm server.
- •ProDC communicates with Expert system.
- •Communication to/from expert system and Mosflm server work.
- •Crystal mounted on ID14.
- •Characterisation collected two images on behalf of expert system.
- •Expert system instigated auto-indexing of images by Mosflm via Mosflm server.
- •Results relayed back to ProDC and displayed in message window.

DNA progress at DL

- •Stand alone GUI Built
- •Can use GUI from PXGEN++
 - •Will contain results of strategy calculation and allow modification before data collection
- Expert system used as developed at ESRF
- •Java class written to interface to expert system
- •Communication to/from same expert system works
- •XML parsing via castor, http://castor.exolab.org

```
Object o = unmarshaller.unmarshal(new StringReader(command));
CollectStart cs = (CollectStart) o;
```


Acknowledgements

Daresbury

Colin Nave, Liz Duke, Geoff Mant, Paul Stephenson, Mike Miller, Karen Ackroyd, Dave Love

ESRF

Olof Svensson, Darren Spruce

Cambridge

Andrew Leslie, Harry Powell, Graeme Winter